Электростатическая модель поля по заданным зарядам на электродах бесконечной периодической решетки

Пусть на поверхности пьезоподложки (плоскость ХΣ) расположена периодическая с периодом Δ и шириной электродов 2a решетка встречно-штыревого преобразователя (ВШП) поверхностных акустических волн (ПАВ). Предполагается, что электроды, расположенные вдоль оси Υ, бесконечно длинные, а по оси Χ, направленной вверх от подложки, бесконечно тонкие. По оси Χ электрод с номером m имеет границы a_n=−a+nΔ−Δ/2 y b_n=a+nΔ−Δ/2.

На электродах с номерами n ∈ М={1, 2, ...} индуцированы заряды Q_n, а с номерами n ∉ М Q_n=0. Требуется определить общий Фурье ρ(k) (k – волновое число ПАВ) плотности распределения зарядов на электродах ρ(x) и потенциала на электродах ψ_m (m – целое).

Электростатическая двумерная (в плоскости ΧΥ) задача описывается функцией комплексного потенциала Ф(x,y)=ξ(x,y)+iψ(x,y), где ξ(x,y) – функция потока; ψ(x,y) – электрический потенциал.

Граничные условия рассмотряемой задачи

\[
\frac{\partial\psi(x,0)}{\partial y}=0, \quad x \in (a_n, b_n); \quad \psi(x,0)=\xi_n, \quad x \in (b_n, a_{n+1}),
\]

где константы \(\xi_n (n \in М) \) определяются рекуррентным соотношением \(\xi_n=\xi_{n-1}+Q_n/(\varepsilon_0+\varepsilon) \) \(\xi_0=0; \varepsilon_0, \varepsilon \) – относительные диэлектрические проницаемости вакуума и подложки. Функция \(\rho(x) \) определяется как

\[
\rho(x)=(\varepsilon_0+\varepsilon)\Im\Phi_0'(x,y)|_{y=0}.
\]

Найдено решение этой граничной задачи в явном виде

\[
\Phi(k)=((\varepsilon_0+\varepsilon)\sum_{n \in М} \xi_n \cdot e^{i kn} \sum_{m \in М} \xi_m \cdot G(m-n), \quad x \in (a_m, b_m),
\]

где

\[
\Phi(k)=\frac{2\sin((\pi\lambda)\cos\theta)}{P_{L\cdot\cos\theta}}, \quad G(m-n)=\int \frac{P_{L\cdot\cos\theta}(-\cos\theta)}{P_{L\cdot\cos\theta}(-\cos\theta)} \sin\{(2m-n-1)\pi t\} dt;
\]

\[
\psi=2\pi a/2, \quad l \cdot \cos\theta \leq l \leq l+1; \theta \leq 2\pi a/\Delta,
\]

Предлагаемая модель удобна при решении задачи синтеза топологии конечных ВШП ПАВ по заданной АФЧХ.