ОПИСАНИЕ ИЗОБРЕТЕНИЯ
К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4697704/22
(22) 29.05.89
(72) Н.Ф. Паушенко и Б.С. Орлов

Авторское свидетельство СССР № 1222170, кл. II 03 II 9/02, 1984.

(54) УСТРОЙСТВО ОБРАБОТКИ СИГНАЛОВ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ СВЧ-ДИАПАЗОНА
(57) Изобретение относится к радиоэлектронике и может быть использовано в диапазоне сверхвысоких частот (СВЧ) для частотной и временной обработки сигналов в радиолокации, телевидении, системах связи и т.д.

Известно устройство на поверхностных акустических волнах (ПАВ) СВЧ-диапазона, содержащее пьезоэлектрический звукопровод, на рабочей поверхности которого размещены входной и выходной электроакустические преобразователи (ЭАП). С целью повышения стабильности и качества материала звукопровода используется кварц термостабильного среза, например ST-среза, для которого температурный коэффициент задержки (ТКЗ) составляет 0·10^{-6}/°С.

В недостатком известного устройства на ПАВ являются большие потери на распространение в области СВЧ (более 1 ГГц), которые составляют 3-1 дБ/мкс, что ведет к существенному росту динамических потерь в устройстве и затрудняет его использование.

Наиболее близким по технической сущности к заявляемому является устройство на ПАВ для обработки сигналов в диапазоне СВЧ, содержащее пьезоэлектрический звукопровод из монокристалла силикагаллиата лантана, на рабочей поверхности которого размещены передающий и приемный ЭАП ПАВ, например встречно-вывернутые. С целью уменьшения потерь на распространение размещение нормали выполнено по отно-

2
шению к кристаллографической оси X монокристалла, а продольная ось звукопровода размещена под углом от (-)40° до (+)40° градусов к кристаллографической оси Y монокристалла, что соответствует ориентации XYZ/β,
где β ≤ ±40°.

Недостатком известного СВЧ-устройства на ПАВ являются большие вносимые потери вследствие отклонения потока энергии ПАВ от продольной оси звукопровода, а также малого коэффициента электромеханической связи для термостабильных направлений, что приводит к сплабому возбуждению ПАВ.

Целью изобретения является уменьшение вносимых потерь при сохранении термостабильности.

Поставленная цель достигается тем, что в устройстве обработки сигналов на ПАВ СВЧ-диапазона, содержащем пьезоэлектрический звукопровод из монокристаллического силиконгала лантана, рабочая поверхность звукопровода ориентирована относительно кристаллофизических осей X, Y, Z с размещением нормалей в ней внутреннего конуса, вне его сечения плоскостью XY, причем ось вращения этого конуса выбрана параллельно кристаллофизической оси X, а угол при вершине конуса составляет не более α = ±10°, причем угол между направлением распространения ПАВ и кристаллографической осью Y выбран в пределах β = ±10+40°.

На фиг. 1 представлено устройство обработки сигналов на ПАВ СВЧ-диапазона; на фнг. 2 - зависимость скорости у ПАВ, угла отклонения потока энергии Ф, ТКЗ и квадрата коэффициента электромеханической связи K_S от угла α при различных углах β для предлагаемого устройства с дважды повернутой кристаллографической ориентацией XYZ /β, обеспечивающей минимальные потери; на фиг. 3-6 - аналитические зависимости для устройства прототипа (α = 0°).

Устройство обработки сигналов на ПАВ содержит пьезоэлектрический звукопровод 1 из монокристаллического силиконгала лантана с дважды повернутой ориентацией XYZ /β, при α ≤ ±10° и β = ±10+40°, передающий 2 и приёмный 3 электролюстический преобразователи (ЭП).

Устройство обработки сигналов на ПАВ СВЧ-диапазона работает следующим образом.

При подаче электрического сигнала на передающий ЭАП 2 в пьезоэлектрическом звукопроводе 1 возбуждается ПАВ, распространяющийся в направлении, составляющем угол Ф с нормально к электродам ЭАП 2. ПАВ достигает приемного ЭАП 3 с затуханием на распространение [1]:

\[0_p \approx a \cdot f^2 + b \cdot f \text{ (дБ/мкс)}, \quad (1) \]

линейно зависимым от расстояния между передающим 2 и приемным 3 ЭАП. Здесь а и b - константы, зависящие от материала звукопровода 1; f - рабочая частота, ГГц.

При выборе угла между направлением распространения ПАВ и кристаллографической осью Y в плоскости X-среза в звукопроводе из силиконгала лантана в пределах β = 10-40° и α = 0° ТКЗ не превышает 20 \cdot 10^{-6}/°С, а минимальное значение составляет 4 \cdot 10^{-6}/°С, что в 7-8 раз лучше, чем у танталата лития YZ-среза. Оптимальное значение ТКЗ при α = 0 наблюдается для угла β, составляющего 30°. По международной классификации эта ориентация кристалла обозначается XYZ/30°. Коэффициент электромеханической связи, определяющий эффективность возбуждения ПАВ, составляет для указанного направления 0,11%, что сравнимо с аналогичным значением для кварца термостабильного ST-среза. Скорость ПАВ при этом составляет 2687 м/с, а угол Ф = 9°. Для интервалов углов β=(10-40°) скорость ПАВ меняется в интервале (2,4-2,7) \cdot 10^3 м/с (фиг. 3), коэффициент электромеханической связи при этом изменяется в интервале (0,04-0,32)% (фиг. 6), а угол Ф - в интервале (3-12)° (фиг. 4). Уменьшение скорости ПАВ в (1,1) раз позволяет во столько же раз увеличить время задержки в устройстве без увеличения его габаритов.

При выборе угла β менее 10° величина ТКЗ для звукопровода из силиконгала лантана становится такой же, что и для устройства со звукопроводом из танталата лития.

При увеличении β за предел 40° коэффициент электромеханической свя-
зи становится практически равным нулю (фиг. 6) и передачи ЭАБ не возбуждает ПАВ, т.е. устройство теряет свою работоспособность.

Помимо потерь в на распространение ПАВ в устройстве существуют дополнительные вносимые потери.

\[Q_{Вн} = Q_{ВнФ} + Q_{ВнК}, \]
\[Q_{ВнФ} = -20 \log(1 - B \cdot \tan \Phi), \]
\[Q_{ВнК} = -20 \log \left(\frac{2 \cdot G_{У} / G_{У}}{\sqrt{1 - G_{У} / G_{У}}} \right), \]

где \(Q_{ВнФ} \) — потери вследствие отклонения потока энергии на угол \(\Phi \) от продольной оси звукопровода, \(Q_{ВнК} \) — потери, определяемые коэффициентом электромеханической связи.

Здесь \(B \) — геометрический параметр, равный отношению расстояния между образователями к их апертуре \(W \), а \(G_{У} \) — коэффициент, \(G_{У} = k \) и \(G_{У} \) — соответственно проводимости излучения ВШП и нагрузки.

В диапазоне СВЧ из-за сложности компенсации статической емкости ВШП обычно выбирают минимально возможную апертуру ВШП и поэтому выражение (4) преобразуется:

\[Q_{ВнК} = -20 \log \left(\frac{2 \cdot G_{У} / G_{У}}{\sqrt{1 - G_{У} / G_{У}}} \right), \]

т.е. потеря зависит от режима согласования. Пусть для заданной проводимости \(G_{У} \) потери из-за рассогласования составляют \(Q_{0} \). В остальных случаях вычисляется разность

\[\Delta Q_{ВнК} = Q_{ВнК} - Q_{0}. \]

При \(\Delta Q_{ВнК} < 0 \) имеет место выигрыш во вносимых потерях из-за рассогласования.

Для термостабильных ориентаций силикагелата лантана известного решения (\(\kappa = 0 \) (ТКЗ не хуже, чем \(1 \cdot 10^{-5}^\circ\text{C} \)), минимальные суммарные потери наблюдаются для среза X11S0/40° (см. таблицу) и составляют \(Q_{0} + 2 \text{ дБ} \), где 2 дБ обусловлены отклонением потока энергии.

Для термостабильной ориентации известного решения X15/10°/20° дополнительные потери \(\Delta Q_{ВнК} \) также составили 2 дБ. Для всех остальных термостабильных ориентаций прототипа, имеющих ТКЗ \(\leq 1 \cdot 10^{-5}^\circ\text{C} \), дополнительные потери большие указанного значения.

В предложенном устройстве снижаются вносимые потери вследствие отклонения потока энергии ПАВ и слабого ее возбуждения (малого \(K^2 \)) наблюдаются для тех поверхностей нормаль, к которым принадлежит кристаллофизическими плоскости УК и составляет угол \(\Psi \leq 10^\circ \), с осью \(X \), т.е. для направлений типа XYBS/\(\varphi \), где \(-10^\circ < \varphi < 10^\circ \), \(+10^\circ < \varphi < 40^\circ \). Это XY-срезы, повернутые вокруг оси Z, параллельной ширине звукопровода. При этом направление распространения ПАВ составляет угол \(8 \) с осью \(Y \).

Значения параметров ПАВ предлагаемых ориентаций представлены на фиг. 2 в зависимости от угла \(\varphi \) и \(\beta \). В таблицах приведены значения из-за сложности коммутации статической емкости ВШП обычно выбирают минимально возможную апертуру ВШП и поэтому выражение (4) преобразуется:

\[Q_{ВнК} = -20 \log \left(\frac{2 \cdot G_{У} / G_{У}}{\sqrt{1 - G_{У} / G_{У}}} \right), \]

т.е. потеря зависит от режима согласования. Пусть для заданной проводимости \(G_{У} \) потери из-за рассогласования составляют \(Q_{0} \). В остальных случаях вычисляется разность

\[\Delta Q_{ВнК} = Q_{ВнК} - Q_{0}. \]

При \(\Delta Q_{ВнК} < 0 \) имеет место выигрыш во вносимых потерях из-за рассогласования.

Устройство обработки сигналов на поверхностных акустических волнах (ПАВ) СВЧ-диапазона, содержащего пьезо-электрический звукопровод из силикагелата лантана, на рабочей поверхности которого размещены передатчик и приемный электроакустические преобразователи ПАВ, отличающееся тем, что, с целью уменьшения вносимых потерь при сохранении термостабильности, рабочая поверхность пьезо-электрического звукопровода ориентирована относительно кристаллофизических осей \(X, Y, Z \) с размещением нормали к ней внутри кругового конуса.
вне его сечения плоскостью X, Z, причем ось вращения этого конуса выбрана параллельно кристаллофизической оси X, а угол при вершине конуса составляет не более ±10°, причем угол между направлением распространения ПАВ и кристаллографической осью Y выбран в пределах 10–40°.

<table>
<thead>
<tr>
<th>п/п</th>
<th>Ориентация</th>
<th>(\varphi_r), град</th>
<th>(\Delta Q_{BW}), дБ</th>
<th>(\Delta Q_{BW, k}), дБ</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XY1S/0°/40°</td>
<td>3</td>
<td>2</td>
<td>0,04</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>XY1S/0°/20°</td>
<td>12</td>
<td>16</td>
<td>0,22</td>
<td>-14</td>
</tr>
<tr>
<td>3</td>
<td>XYbS/0°/30°</td>
<td>7</td>
<td>6</td>
<td>0,14</td>
<td>-11</td>
</tr>
<tr>
<td>4</td>
<td>XYbS/0°/25°</td>
<td>11</td>
<td>13</td>
<td>0,17</td>
<td>-12</td>
</tr>
<tr>
<td>5</td>
<td>XYbS/0°/35°</td>
<td>5</td>
<td>5</td>
<td>0,09</td>
<td>-6</td>
</tr>
</tbody>
</table>

Фиг. 1